
 

1st Mae Fah Luang University International Conference 2012 1 

 

SEGMENTATION OF THE ULTRASOUND IMAGES OF BREAST CANCER BY 
GENERALIZED GRADIENT VECTOR FLOW SNAKES 
 

Stanislav S. Makhanov 
 

School of Information and Computer Technology, Sirindhorn International Institute of 
Technology, Thammasat University, Thailand 
e-mail: makhanov@siit.tu.ac.th  
 

 
Abstract   
 
The paper presents two new modifications of the Generalized Gradient Vector Flow Snakes 
based on the directional analysis of the corresponding vector field. 
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Introduction  
 
Segmentation of ultrasound (US)  images of breast cancer is one of the most challenging 
problems of the modern medical image processing.  A number of popular codes for US 
segmentation  are based on a generalized gradient vector flow  (GGVF) method proposed by 
Prince and Xu [1] .  A “raw” gradient vector field derived from the image edges is replaced 
by a field which minimizes a certain variational functional. The functional is designed to 
extend the large gradients far from the boundary, smooth  the noise and speckles while 
keeping gradients attached to strong edges (see a fairly comprehensive review [2]).    
 
The Euler system for the functional includes two elliptic equations which are interpreted as a 
steady state diffusion of the gradient vector flow. However, the GGVF does not take into 
account relative orientations of the vectors. Therefore, certain configurations, for instance, 
parallel vectors with large magnitude will not be smoothed although they do not form a 
boundary. Furthermore, a weak true boundary can generate a sequence of antiparallel vectors 
having small magnitudes. Such vectors may be destroyed by the diffusion. Consequently, the 
edge will be damaged and the snake will attach itself to a false boundary.     
 
The Continuous Orientation Force Field Analysis(COFFA) [2] solves this problem by 
converting the vector field at every step of the iterative process back into the gray level and 
modifying the diffusion coefficients accordingly.   
 
In this paper COFFA has been improved in such a way that it admits internal boundaries 
where the vector flow is temporarily or permanently fixed (“frozen boundaries”).  The GGVF 
diffusion equation is then solved in the rectangular domain with the internal boundaries 
characterized by the Dirichlet boundary conditions(COFFA-GGVF-FB).       
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Furthermore, we propose to equip the GGVF equations with a diffusion coefficient which is 
polynomial function of the intensity of the edge map. The procedure generates clusters 
corresponding to the background, the shadows/noise and the boundary.  The centers of the 
clusters are used to interpolate the diffusion to obtain it for an arbitrary gray level. At this 
step we apply a monotone polynomial interpolation which works better than the exponential 
diffusion used by the standard GGVF(COFFA-GGVF-FB-DYK).       
 
Continuous Orientation Field Flow Analysis 
 
The improved version of the GVF [1] is called the generalized gradient vector flow GGVF 
[5]. The weighting functions g and h depend on the gradient of the edge map so that in the 
proximity of large gradients g gets smaller whereas h becomes larger. The GGVF model is 
given by   
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where f is the gradient field derived from the edge map of the image.  For instance, 

| |f I  , where I is the gray level of the edge map. A variety of edge detectors such as the 

Canny or Sobel detectors can be applied to evaluate | |I  and      
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      ,  where K  is a calibration parameter.  

In this paper we modify function g  as follows 
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where ,M Ds s  is the magnitude and direction score of the vector field respectively and  

,M DF F  are the corresponding score functions. 

 
At the boundary of  the object the vector field consists of antiparallel vectors. In this case the 

diffusion coefficient  ,D Mg s s  must be small and “stopping coefficient”  ,D Mh s s must be 

large. As opposed to that, parallel vectors corresponding to the background should entail 
large diffusion, so that the small noise is smoothed and the large gradients along the boundary 
propagate through this area. In order to capture the direction along which the vectors are 
aligned the most, the algorithm  introduces a rotating window. For each orientation of the 
window the vector field is first interpolated into the corners of the window 
 

Next, 1 2φ(θ ,θ ) measures the deviation of the vectors at the two opposing corners from the 

direction corresponding to the orientation of the window. The closer the two vectors are to 

the prescribed direction the greater is 1 2φ(θ ,θ ) .  

 

The maximum response 1 2φ(θ ,θ )  shows how close to the anti-parallel position the vector 

field is in the locality of the candidate boundary point. In order to construct the membership 

function 1 2φ(θ ,θ )  we use two dimensional interpolation techniques with a few control points. 
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Adaptive Diffusion Coefficients  

Recall the  diffusion coefficient  given by      
, M M D D

M D

F s F s
g s s e


  . 

As opposed to the classical GGVF where  
M

M

s

Kg s e


 , where K is a single tuning 

parameter, our model employs a rational function  
( )

M
M M

M

s
F s

K s
  , where ( )MK s  is a 

monotone Hermite cubic spline such that ( ) 0,M MK s s  . The polynomial is generated using  

significant clusters of the edge map. The clusters are generated by the standard fuzzy C- 
mean method.  

Usually, our algorithm  generates four clusters corresponding to background, noise, shadows 
and the boundary of the tumor. The centroid of each cluster is selected as the representative 
of the cluster and the corresponding Hermite polynomial is constructed so that    ζM i iF s  , 

where ζi  are selected manually. However, if the cluster of  shadows is not well defined, only 

three clusters are generated.  Finally,   0 0MF  . Therefore,  if gradient of the edge map is 

equal to zero, the diffusion reaches its maximum  ,0 1Mg s  .  The Hermite polynomial is the 

monotone piecewise cubic Fritsch-Carlson spline [4]. constructed using the slopes of the 
secant lines between the successive points and adjusting the slopes to ensure monotonicity.  

Numerical Experiments    
 
This section presents numerical experiments tested on a ground truth contours obtained from 
a series of breast tumor US images. The ground truth was hand-drawn by leading radiologists 
with Queen Sirikit Center for Breast Cancer of Bangkok.  
 
This section compares the classic GGVF method with the method described above. Let us 
denote the proposed method by COFFA-GGVF-FB-DYK where FB stands for the frozen 
boundary and DYK  for the dynamic choice of K combined with the Hermite interpolation [4] 
 
In order to be fair to the conventional GGVF we run it on the same preprocessed images and 
find the best K  by using a grid search.  Finally, the preprocessing employs the same set of 
parameters defined by training, even though for some images it is possible to find a better 
combination of the parameters.    
 
The accuracy is defined as a percentage of true positive points with the reference to the true 
boundary. A contour point is considered to be a true positive point if a point in the ground 
truth image belongs to the true contour.  
 
The accuracy is also evaluated in terms of the generic Hausdorff distance (H1) given by  

1
dist ( , ) max{max min || ||,max min || ||)H

b Y a Xa X b Y
X Y a b a b

  
   ,                                              

where || || denotes the Euclidian distance, X  the ground truth contour and Y  the resulting 
contour.  The averaged Hausdorff distance (H2) is obtained from (12) by replacing the 
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Table 1 indicates convergence of the methods and the best accuracy throughout 5,000 
iterations. Since the conventional GGVF often does not converge, the best accuracy was 
recorded at some transitional iteration step. However, a criterion to terminate the GGVF 
iterations if they do not converge in the classical sense is an open problem. Therefore, the 
GGVF accuracy is actually overestimated.  Still our proposed method outperforms GGVF.  
First of all, it always converges. Second, COFFA-GGVF-FB-DYK with the adaptive K 
outperforms GGVF endowed with the best K  found by the trial end error method, where 

| f

Kg e



  and g  is the diffusion.  As opposed to that the adaptive method does not require 

any training and will adapt K automatically.  Note that  K  employs a monotone Hermite 
spline interpolation [4] 
 
For GGVF and the proposed method the classical explicit numerical scheme was employed 

which converges if max4 1g  [1] . This condition was satisfied for every experiment. 

However, GGVF iterations may also diverge when (| |)g f  is too small, that is, the 

parabolic equation degenerates.  This case requires special numerical procedures for 
parabolic equations with singularities.   For instance, if (| |) 0g f  , the system is no longer 

parabolic. Therefore, boundary conditions (required for uniqueness of the solution of the 
parabolic equation) can not be satisfied.   
 
However,  the proposed polynomial interpolation  does not change as fast as the exponential 
diffusion. Besides we freeze the numerical solution when (| |)g f  is close to zero. These 

procedures help to maintain the numerical stability and provide the convergence even when 
the simple explicit scheme is employed           
 
Finally, in many cases the accuracy of GGVF is very sensitive to variations of  K.  Consider a 

graph of TP vs. K  in Figure 3. The maximum accuracy maxTP =89%  is achieved at K=0.185.  

Let us define an acceptable range as max{ :  TP 0.99TP }K  . Then  [0.17,0.225]K   with the 

average accuracy  88% within this interval. It is a relatively large interval, however,  the 
accuracy drops abruptly when 0.17K  .  For instance, for  K=0.16 the accuracy is only 62%.   
 
The adaptive procedure endowed by COFFA and FB increases the variability of the 

permissible diffusion  g s , thus, resulting in the same or even better segmentations with the 

reference to the best GGVF performance.   
  
Note that the best maximum Hausdorff error H1 = 5.0 pixels which seems large. However, 
the best average Hausdorff error H2 =1.  It means that on average, the actual contour deviates 
from the true contour by only 1 pixel.  
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Table 1 Accuracy and convergence of GGVF and COFFA-GGVF-DYK-FB  
          Method 
 
 
Criterion 

No-
preprocessing 
GGVF,  best  
K=0.13 

Preprocessing 

GGVF,  K varied    
GGVF-
DYK 

COFFA-GGVF-
FB-DYK 0.18 

max 
accuracy 

Acceptable 
range: 0.17-0.22 

TP 39.1975 89.1901 88.0814 91.3580 93.0329 

Hausdorff max,H1 23.2402 8.1519 8.9413 6.1855 5.1173 

Hausdorff average, H2 9.1462 1.0329 1.0724 0.9059 0.7638 

Snake convergence Yes yes Yes yes yes 
GGVF convergence 
explicit scheme  
 

No no 
 

No yes yes 

 

   

  
 

Figure 3 Accuracy of GGVF vs. the diffusion coefficient K.  
 

Consider segmentation results presented in Figure 2. Clearly, GGVF—DYK and COFFA-
GGVF-FB-DYK generate star-like patterns ideal for using the expanding snakes whereas 
GGVF with the best K=0.185 generates multiple stars (unwanted internal boundaries).  
Finally,  only COFFA-GGVF-FB-DYK  is able to resolve the  corner on the right side of the 
image.         
 
Finally, let us analyze the accuracy vs. the iteration number in Figure 4. The standard GGVF 
does not converge whereas the proposed method does.  
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Figure 4 Convergence: H1, solid line – GGVF, dashed line COFFA-GGVF-DYK, dotted line 
COFFA-GGVF-DYK-FB 
 
The accuracy of  GGVF in terms of  TP reaches its peak at 6th -9th iteration.  However, the 
diffusion destroys the boundary decreasing the number of true positives.  The maximum 
Hausdorff  distance stays  stable for some number of iterations. However, once the location 
of the maximum error changes, the accuracy in terms of H1 abruptly drops (Figure 4). As 
opposed to that H2  based on the averaging the distances, changes smoothly. However, it 
increases starting with 16th -18th iteration.  In any case, neither TP nor  H1 , H2 converge.  As 
opposed to that, both versions of the proposed method converge, that is, after a few iterations 
the vector field remains the same indefinitely.  
 
Example 2 A medium contrast malignant tumor. Complicated Shape. High Noise.  
 
Results similar Example 1 are obtained for a malignant tumor in Figure  5 (a). Table 2 shows 
that COFFA-GGVF-FB-DYK outperforms the standard GGVF even for the best K  selected 
manually.  
 
Note that optimal  K  for GGVF for Example 2 is very different from K obtained in Example 
1. The optimal  K=0.18  for the tumor from Example 1, however  the best K=0.13 for 
Example 2. Moreover, the acceptable range in Example 1 and 2 is  [0.17-0.22]  and [0.12-
0.13] respectively. The high variability of optimal K in (compare Figure 3 and Figure 6)  
means that it might not be possible to always establish a single K  for GGVF model even by 
training the model on a series of images. Nevertheless, the proposed model is parameter free. 
The dynamic K is established automatically and varies from region to region.               
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(a) The original image (b) The ground truth  

(c) GGVF, K = 0.09 
without preprocessing 
 

 
(d)  GGVF,  K= 0.11 

preprocessing 
 

(e) GGVF K= 0.13, 
preprocessing 

 

 
(f) GGVF K= 0.14, 

preprocessing 

(g) GGVF-DYK, preprocessing 
 

(h) COFFA-GGVF-FB-
DYK, preprocessing 

 
Figure 5 Extraction results using the proposed method with the reference to the standard 
GGVF.      
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Table 2 Accuracy and convergence of GGVF and COFFA-GGVF-DYK-FB 
 
Method 
 
 
 
Criterion  

No preprocessing 
GGVF + best K 
0.09 

Preprocessing 

GGVF  K varies    
GGVF-DYK 

COFFA-
GGVF-FB-
DYK 

Best K=0.13 
 

Acceptable 
range: K=0.12-
0.134 

TP 24.9165 88.0059 88.0050 88.2698 91.0236 
HD1 32.0278 7.0881 7.3531 6.6123 5.6857 
HD2 23.9605 1.3935 1.3939 1.3660 0.6766 
HD3 13.4837 0.7841 0.7843 0.7687 0.3808 
Snake 
convergence 

yes yes yes yes yes 

GGVF 
convergence 

no no no yes yes 

 
Again the proposed approach over performs the conventional GGVF and converges to a 
meaningful solution.  
 

 
 

         Figure 6 Accuracy of GGVF vs. the diffusion coefficient K.  
 

Conclusions 
 

The proposed adaptive GGVF-COFFA-FB-DYK  snake  shows much promise as applied to 
detection breast tumors in ultrasound images. The method provides the same or better  
accuracy with the reference to the conventional  GGVF equipped with the best parameters. 
The model is  less sensitive with regard to the distance between the initial contour and the 
object boundary. The method can be applied with a variety of edge detection methods and in 
many cases the required thresholds can be selected automatically.  
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